
m-134 
2040 

BZAi4 EXTRACTION NEAR A THIRD-INTEGRAL RESGIJAlJCE II 

I<. R. Symon 

April 1, 1968 

In this report, we will obtain Eq. (I-1)" from the primitive 

equations of motion for betatron oscillations, and in particular, 

we will find expressions for the variables y, p and the parameter 

A in terms of the natural variables x, x' = dx/dG and the accel- 

erator parameters. We take for x the radial displacement from the 

equilibrium orbit, and 0 = s/R, where s is the distance along the 

equilibrium orbit measured from the extraction septum, and 2nR 

is the length of the equilibrium orbit. 

The linear equation of motion 

x" + g(O)x = 0 (1) 

can be deduced from the Hamiltonian 

h2 = ;-xv2 t $(0)x2 (2) 

where x' = dx/dO is the momentum conjugate to x. Ni.th sextupole, 

octupole,...terms present, the Hamiltonian is 

h = h 2 + h+x, x', 0) + h4(X, x', G) + ***> (3) 

where h 
3’ 

hll are cubic and quartic in x, x', and periodic in 0. 

The solution of the linearized equation can be expressed 

in terms of the Floquet solution 

Equations from report I of the series under this title will be 
numbered in this fashion in this report. Equation numbers with- 
out Roman prefixes refer to the present report. 



x = ,,i(vO f $ - 71/2) (4) 

and its complex conjugate, where w(O), Q(O) are periGdic with 

period 27~ if misalignments are included, otherwise with period 

2rr/lds where Ns = 6 is the number of superperiods. Choosing an 
ii appropriate linear combination of x and x , we may write the 

general solution in the form 

x = Awsin(v0 + !i, + c), (5) 

X’ = Aw'sin(vG t + t 5) t Aw-'cos(vO + $ + <), 

where A, 5 are arbitrary amplitude and phase. The matrix N(O) 

which carries x, x' from 0 to 0 t 2~ is, from Eq. (51, 

i 

COS~ITV - asin2rrv fSsin27rv 

N(O) = > (6) 

-l + u2 sin2av COS~IVJ + u sin2Tv 
e 1 

where c1 = ww' , fi = w 2 = (v + $‘)-I. 

It is convenient to choose the additive constant in $ 

so that $ (0 = 0) = 0: 

l)(O) = &o-l - v)dO. 
0' 

(5) in the form 

XWCOSQ, 

(7) 

(8) 

Xe now can write the solution 

x = Pwsin$ t 

X’ = P(w'sin$ + w-lcos$ 

;Vhere 

(9) 
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) t X(w'cosJI - w-lsini)), 

X = Asin(vO t ~1, 

P = Acos(vQ + 5). 

lnie can readily verify that the Poisson bracket 

(10) 
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ax ax’ ax x = 1, - _-- 
ax ap ap ax (11) 

so that %, P are also canonical variables which clearly satisfy 

equations derived from the Hamiltonian 

H2 = $. "(X2 + P2). (12) 

It is easily verified that the transformation (8) indeed leads 

to the Ilamiltonian (12). We note that at 0 = 0, 

x = wax = @x, 

x' = w. -1P + W'X = 6 
0 

-l'*(P + LXX), (13) 

X = 6”-1/2,, 

P = B01/2x1 _ ,8o-1/2x* 

Since the transformation (9) is canonical in any case, and 

since its generating function is quadratic, we may carry out the 

same transformation on the nonlinear Hamiltonian (3) merely by 

replacing h2 by 112 and making the substitution (9) in h 3' “4,‘.. 

a distribution of sextupoles 

rise to fields 

), (14 

We nori suppose that there is 

around the machine azimuth, eiving 

B, = -F(O)(G - z2 

% = -2F(0)xz2. 

liere z is the vertical coordinate, and F(O) is the sextupole 

strength. The contributions of the sextupole terms to the equa- 

tions of motion are given by 

x " = linear terms + eRF(0) (x2 - z*), 
PlYW 

z " = linear terms - 2iyE(0) xz. 

:.!e are primarily interested in the radial motion, but we also 

(15) 

1 



-4- FN-134 
2040 

need to insure that the z-motion is not unduly disturbed by the 

extraction scheme. The cubic terms in the Hamiltonian which give 

the sextupole terms in Eqs. (10) are 

h3 
= eRF(O) 

Myu 
(x2 - 1/3x3), (16) 

?he linear z-motion can be treated in precise analogy with 

the treatment above of the x-motion. We are led to a canonical 

transformation z, z' + Z, Pz analogous to the transformation (9). 

Ile will ignore for the moment the z-term in h3, as the other 

term is the one which drives the extraction resonance. 

Eefore calculating H3, we note that we may introduce ca- 

nonical polar coordinates p, y in the X, P-plane via the trans- 

formation 

x = (2p)l/2 siny, 

P = (2P)l'2 cosy. 
(17) 

It is readily verified that the necessary Poisson bracket con- 

dition is satisfied. We will transform between X, P and y, p 

whenever convenient. In particular, we have from Eq. (9): 

x = (2pR)1'2sin (y + $1, (18) 

so that the amplitude of x-oscillations is given by (206)~'~. 

We now make the substitution (9) or (18) in the x-term 

in Eq. (16): 

Ii = 
3 

~~~~~) (2pB)3'2[sin (3y + 31)) - 3 sin (y + $J)]. (19) 

We assume that the sextupoles are located at azimuths Oj, j = 1, 
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2 ,***, and put 

F(0) = Jc Pj6(0 - Oj). 

‘vje Fourier analyze H3: 

(20) 

ii = 3 FJtSjG imFje im(o - "j)(2pL3j)3/2[sin(3u + 3Qj) - 3 sin(y + $j)l 

(21) 

= (2p)3'2; 
m = -m 

1 
"33m COS(3Y - mQ + q33m ) + H31m cos(y - mO t ry 31m)' 1 

where 

3/2Fjei(m@j t 3Jlj - n/2) (22) 

H31me 
F .i(mOj + $ + u/2) j 3 

It can be seen from Eq. (8) that the Q j 
are equal at homologous 

points around the accelerator. In particular, if the azimuth of 

sextupole j is homologous to the extraction septum, '$ j = 0. 

The resonance v = m,/3 is driven by the term 

"3 3m0 (2P)3'2 cos (3y - m30 + n 33m0)' (23) 

if v is very close to mO/3, this will be the dominant sextupole 

term. All other terms can be transformed into higher orders in 

p by a suitable change of variables. In a later report we will 

carry out this transformation in order to determine the resulting 

fourth order terms in IIll which distort the separatrices found 

in report I. The resulting variables after the transformation 

are only slightly different from X, P or p, y defined above, 

provided no other nearby resonance is strongly driven by a term 
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in Eq. (21). The term in H31m can drive the integral resonance 

v = m; hence it is desirable to have several sextupoles at care- 

fully chosen azimuths Oj and with appropriate amplitudes Fj so 

as to make H 
31m 

vanish for at least the nearest integer m to V. 

If the Oj are all homologous, so that the 0. and $j are all equal, 
J 

then H33m (and I131m also) vanishes if F(O) has no mth Fourier 

component. This can be arranged for n-l components if there are 

n sextupoles with suitably chosen F 
j' 'Cl' 

However the require- 

ment that they be at homologous points may necessitate up to 

Zn sextupoles, to eliminate n-l harmonics and provide a desired 

amplitude and phase of the harmonic m 0' Although the terms in 

Eq. (21) cannot drive a half-integral resonance, any deviation of 

the equilihrium orbit from the center of the sextupoles will in- 

troduce quadrupole terms which can. The terms driving the reso- 

nance v = m/2 can be eliminated by eliminating the mth harmonic 

from F(O) provided that the 0 
J 

are homologous and the orbit de- 

viations are identical in each. Otherwise the elimination of Ii22m 

is more complicated and may depend on the orbit deviation. 

The term xz2 in Eq. (16) drives resonances of the type 

"x k 2vz = m. We can readily calculate the amplitude Hlt2m of the 

corresponding driving: terms in the same way as above. It will 

probably be desirable so to place the sextupoles as also to 

eliminate or minimize the terms that drive the one or two sum 

and difference resonances closest to the working point. 

It should he noted that one advantage of working at a 

third-integral resonance is that this resonance selects out the 

quadratic terms in the equations of motion, the term (23) having 
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a dominant effect, while terms which drive other resonances have 

relatively less effect. If we try to extract on an integral 

resonance, on the other hand, depending nevertheless on sextu- 

pole terms to increase the amplitude at the extraction point, 

then not only sextupole terms, but also gradient terms and field 

bumps can affect the orbit strongly. The resonance v = m is also 

v = 2m/2 and v = 3m/3. If the equilibrium orbit is centered in 

the sextupoles, then the sextupole terms, which drive v = 3m/3 

may be dominant. However, any deviation of the orbit from the 

center of the sextupoles will introduce gradient and field bumps 

which drive v = 2m/2 and v = m. Thus the integral extraction 

process can be extremely sensitive to orbit deviations. 

We now write the approximate Hamiltonian for u near the 

third integral resonance by adding the term (23) to the quadratic 

Bamiltonian H2 given by Eq. (12): 

Ii = VP t 1~33~,(2~~3/2 cos (3~ - moo t q33mo), (24) 

We introduce a final transformation o,y + e,r via the gen- 

erating function 

s = p(v - l/3m00), 

F, = awaY = 2, (25) 

1 = awap = y - 1/3m00. 

The new Hamiltonian is 

E = II + as/a0 

= (v - mo/3)g + H33mo (2pF2 cos (31 + ‘13jmo). (26) 

This is the form introduced in report I, where we dropped 

the bar from e. The coefficient A = H33m is given by Eq. (22) 
0 
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and the azimuths Oj and sextupole strengths Fj must be chosen 

so that q33mo = il. 

Note that the barred phase plane Q, x, or X, p, rotates 

with angular velocity m0/3 relative to the X, P-plane, returning 

to its original position every three revolutions. Since the 

curves in Fig. I-l have a three-fold symmetry, the phase plot 

siiown in that figure repeats every revolution. 


